
LA-UR-21-22725
Approved for public release; distribution is unlimited.

Title: (U) A Theoretical Study of Asay Foil Trajectories

Author(s): Tregillis, Ian Lee

Intended for: Report

Issued: 2021-03-19



Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001.  By approving this article, the publisher
recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or to allow others to do so, for U.S. Government purposes.  Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy.  Los Alamos National Laboratory strongly supports academic freedom
and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its
technical correctness.



LA-UR-YY-ZZZZZ

(U) A Theoretical Study of Asay Foil Trajectories

I. L. Tregillis, XCP-6

Abstract

We consider the trajectory of a generic Asay foil ejecta momentum diagnos-
tic sensor, for scenarios where ejecta are produced at a planar surface and fly
ballistically through a perfect vacuum to the sensor. To do so, we build upon a
previously established mathematical formalism derived for the analytic study
of stationary sensors (i.e., piezopins). First, we derive the momentum conser-
vation equation for the problem, in a form amenable to accelerating sensors,
in terms of a generic ejecta source areal mass function (“source model”). This
defines an integro-differential equation (IDE) for the foil trajectory. When
ejecta production is instantaneous—as is generally assumed in momentum di-
agnostic data analyses—the IDE can be cast in a highly compact form. This
compact IDE leads to an implicit and easily calculable closed-form solution for
the foil trajectory in a perfect system, as long as the ejecta particle velocity
distribution is twice-integrable. General properties of the instant-production
trajectory solution indicate the existence of a boundary condition the particle
velocity distribution must satisfy in order for the analytically predicted foil
trajectories to be compatible with certain features commonly observed in foil
data. This boundary condition is identical to one derived previously from a
consideration of piezopin data. Armed with the analytic solution for instant
production, we also consider various techniques used to extract time-dependent
cumulative ejecta masses from foil trajectories, and derive an expression for
the error imposed by using an approximated equation of motion. This ana-
lytic trajectory solution furthermore makes it possible to examine the common
practice of presenting inferred cumulative ejecta masses as a function of a nor-
malized implied velocity; we derive conditions under which this methodology
is and is not meaningful. We also propose a strategy for extending the instant-
production trajectory solution to time-dependent source functions.
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1 Statement of the Problem

This work is built upon a mathematical formalism originally developed for analytic
examinations of piezoelectric ejecta measurements (i.e., for motionless sensors). That
formalism—including its derivation, its application to problems of interest, and key
results obtained from its use—has been extensively documented elsewhere [1–3].
Thus, for the sake of expedience, this work will cite previously derived results as
necessary, referring the reader to the relevant documentation.

The problem of interest concerns the dynamical evolution of an ejecta cloud launched
into vacuum from a singly shocked planar metal surface. In particular, we consider
a situation where this cloud impinges upon a downstream sensor (an “Asay foil,” or
“foil” [4–6]) which subsequently undergoes acceleration owing to perfectly inelastic
momentum transfer. Under certain circumstances, with the appropriate assump-
tions, measuring the time-dependent foil trajectory can yield information about the
ejecta cloud, including the time-dependent accumulation of mass on the sensor.

For the purposes of this study, we consider a system that exactly embodies the
assumptions built into the standard momentum-diagnostic analysis procedure. At
the shock breakout time t0 = 0 a planar free surface initially situated at z = 0
(these conventions simplify the derivations with no loss of generality) undergoes an
instantaneous acceleration to constant lab-frame velocity ufs. Ejecta production also
begins at t0. (The standard analysis procedure assumes this process is instantaneous,
but here we relax that requirement, seeking solutions for sustained production, with
instantaneous ejecta production as a special limiting case.) At some later time,
tc (for “time of creation”), an ejecta particle is launched from the free surface with
relative velocity w and lab frame velocity u = w+ufs. This flies ballistically through
the perfect vacuum toward an Asay foil initially situated at distance zf0 from the
unperturbed free surface. The foil is characterized by a clean areal mass µf . The
particle collides perfectly inelastically with the foil at measurement time t. The foil
accelerates as material accretes upon it, thus exhibiting a trajectory zf (t). In an
experiment, the foil velocity vf (t) = żf (t) constitutes the physics measurement.

The ejecta particles are assumed to travel collinearly to the sensor with a long mean
free path to scattering, so that neither the particle velocities nor the longitudinal
ejecta cloud mass per unit area change in transit. The foil supports are disregarded
in this treatment; an extensive examination of foil technologies has shown that for
the purpose of analyzing the trajectory, well-designed foils can be justifiably approx-
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imated as “free floating” objects [6]. Throughout, we assume the foil is sufficiently
thin that corrections for thick-plate effects (e.g., time delays between particle impacts
on the collection side and velocity changes on the probe side) can be disregarded [5].

The problem geometry is defined such that all quantities are nonnegative. The peak
ejecta relative velocity is ŵ, and the peak ejecta lab-frame velocity (i.e., the velocity
of the leading edge of the cloud) is û = ŵ + ufs. This setup is depicted in Fig. 1.

The problem: Given a known source function mc (w, tc), we seek a self-consistent
analytic solution for the subsequent foil trajectory zf (t).

Alternatively, a secondary but still interesting result would be to place nontrivial
constraints on the functional form of mc given a known zf (t). Approximate solutions
for quasistatic foil motion are easy to derive, but as shown in §3.8.1 they have limited
applicability.

A source areal mass function (AMF) [1,2] (mc) is the mathematical representation of
a physics hypothesis for ejecta production: a “source model.” This AMF represents a
distribution function for ejecta mass produced per unit area of the source, in particles
of relative velocity (w) at a given creation instant (tc). Thus it carries units of mass
per unit volume (mass per unit area per velocity per time).

A closed-form solution for the foil trajectory would constitute a powerful tool for
physics model validation, enabling quantitative “apples-to-apples” comparisons be-
tween ejecta source model predictions and Asay foil data. A similar approach applied
to piezoelectric ejecta measurements has proven highly beneficial to both model val-
idation and code verification efforts [1, 3].
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Figure 1: A free surface facing into vacuum is initially at rest in the lab frame (dashed
black line). At t0 = 0, that surface is shocked, liquefied, and instantaneously uniformly
accelerated to constant lab-frame velocity ufs (blue line). At creation time tc, an ejecta
particle is launched from the free surface with relative velocity w and lab-frame velocity
u = w + ufs. The source function mc (w, tc) encodes the time-dependent distribution
function for all such particles. The ejecta fly ballistically toward an Asay foil (red) initially
at rest at distance zf0 from the unperturbed surface, and which has areal density µf .
Particles begin to hit the foil (with perfectly inelastic collisions) at measurement time ta0,
at which point the foil undergoes a smooth continual acceleration with trajectory zf (t).
The peak relative particle velocity is ŵ, which can be treated as time-independent for our
purposes. Experimental data suggest the particle relative velocities extend down to w = 0,
meaning there is no gap between the cloud and the free surface of liquefied metal. Data
collection ends at some final measurement time tfs, when the free surface slams into the
sensor and destroys it. The sought-after solution is not required to handle the moment
t = tfs, but should work asymptotically close to tfs.
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2 Derivation of the Integro-Differential Equation

This problem effectively has three frames of reference: the lab frame (i.e., the frame
of reference pinned to a stationary sensor, such as a piezoelectric pin); a frame co-
moving with the post-shock free surface (ejecta source models are naturally specified
in this frame); and a noninertial frame associated with the accelerating foil. For
stationary sensors (pins), momentum transfer calculations are most naturally per-
formed in the sensor (lab) frame. Here, working in the sensor frame is complicated by
the presence of an unknown time-dependent transformation between that frame and
the others. However, because the quantity of interest is the lab frame foil trajectory,
sensor-frame calculations are unnecessary.

Consider a stationary sensor located at z = h. The time-dependent ejecta areal mass
accumulation is given by [1, 2]

m (h; t) =

ŵ∫
h
t
−ufs

tc(h;w,t)∫
t0

mc (w, tc) dtc dw =

ŵ∫
h
t
−ufs

(w+ufs) t−h
w∫

0

mc (w, tc) dtc dw

=

ŵ∫
0

(w+ufs) t−h
w∫

0

mc (w, tc) dtc dw . (2.1)

The lower limit on the velocity integration is defined by the causality condition:
particles slower than this cannot arrive at the sensor by measurement time t. The
function tc(h;w, t) is the time at which particles of relative velocity w must be created
in order to arrive at z = h at time t. Because this function is negative for velocities
below the causality limit, and because the source function is identically zero for
tc < t0 = 0 (because no particles are created prior to shock breakout), the lower
limit on the velocity integration can be taken to 0 with no loss of generality.

Similarly, the total lab frame momentum deposited on the sensor (assuming perfectly
inelastic collisions) is the lab frame momentum content of the accreted material:

p (h; t) =

ŵ∫
0

(w+ufs) t−h
w∫

0

mc (w, tc) (w + ufs) dtc dw . (2.2)

4



How are these quantities correctly calculated on a moving sensor, µe(t) and πe(t)?

Consider a foil initially located at zf0 < h, with an acceleration history such that
zf
(
t < t̃

)
< h, zf

(
t̃
)

= h, zf
(
t > t̃

)
> h. When zf (t) < h, material accumulates on

the closer foil more rapidly than it would on the more distant stationary sensor:

µe
(
t < t̃

)
> m

(
h; t < t̃

)
πe
(
t < t̃

)
> p

(
h; t < t̃

)
.

Conversely, when zf (t) > h particles that would have arrived on the stationary sensor
exactly at time t have not yet arrived, meaning the subsequent accumulation is slower
than on the stationary sensor:

µe
(
t > t̃

)
< m

(
h; t > t̃

)
πe
(
t > t̃

)
< p

(
h; t > t̃

)
.

Because the instantaneous accumulation on the sensor at time t̃ depends only on
the particle velocities and the travel distance, zf

(
t̃
)

= h, not the instantaneous foil
velocity,

µe
(
t̃
)

= m
(
h; t̃
)

πe
(
t̃
)

= p
(
h; t̃
)
.

In general, then,

µe(t) = m
[
zf (t); t

]
=

ŵ∫
0

(w+ufs) t−zf (t)
w∫

0

mc (w, tc) dtc dw (2.3)

πe(t) = p
[
zf (t); t

]
=

ŵ∫
0

(w+ufs) t−zf (t)
w∫

0

mc (w, tc) (w + ufs) dtc dw . (2.4)

Momentum conservation requires[
µf + µe(t)

]
żf (t) = πe(t) (2.5)

µf żf (t) + żf (t)

ŵ∫
0

(w+ufs) t−zf (t)
w∫

0

mc (w, tc) dtc dw =

ŵ∫
0

(w+ufs) t−zf (t)
w∫

0

mc (w, tc) (w + ufs) dtc dw
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so the key relationship is encoded in this integro-differential equation (IDE):

µf żf + (żf − ufs)
ŵ∫

0

(w+ufs)t−zf
w∫

0

mc (w, tc) dtc dw =

ŵ∫
0

(w+ufs)t−zf
w∫

0

wmc (w, tc) dtc dw

(2.6)

The problem of interest is to solve this equation for zf (t), given mc (w, tc).

As shown below, Eqn. 2.6 can be reduced to a far more compact form. Before
continuing with that derivation, we first confirm that the IDE yields the correct
result for a simple problem with a known solution.

2.1 Sanity Check: Single Particle

The simplest test problem represents a single particle launched from the source:

mc (w, tc) = m0 δ (w − w̃) δ (tc)

where m0 and w̃ are positive constants and and δ denotes the Dirac delta function.

When applied to Eqn. 2.6, this form for the source function causes the integration

over tc to be nonzero long as
(w+ufs)t−zf

w
> 0 for a given fixed measurement time

(t), or equivalently when w >
zf
t
− ufs (acknowledging a potentially subtle detail

when the upper limit of integration is exactly zero). So for all instant production
scenarios, the IDE simplifies to

µf żf +m0 (żf − ufs)
ŵ∫

zf
t
−ufs

f(w) dw = m0

ŵ∫
zf
t
−ufs

f(w)w dw

and because ŵ is the maximum physically allowable value for w, f(w) ≡ 0 for w > ŵ
and the upper limits of integration can be taken to infinity as necessary.

Now the w integrations are zero if
zf
t
− ufs > w̃, or equivalently when t <

zf
w̃+ufs

.

The denominator is the lab-frame particle velocity, so this is simply the causality
requirement: prior to particle arrival the sensor must remain motionless, and indeed
we have µf żf = 0 =⇒ żf = 0.
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For any causal measurement time (after particle arrival), the velocity delta function
is satisfied, yielding

µf żf +m0 (żf − ufs) = m0 w̃

or
żf =

m0

µf +m0

(w̃ + ufs)

which is the correct answer to this trivial conservation of momentum problem.

2.2 Derivation of the Compact IDE

Here we derive the final, compact, form of the integro-differential equation.

We begin by defining the generalized ejecta velocity

ζ(t) ≡ zf (t)

t− t0
− ufs =

zf (t)

t
− ufs (2.7)

when t0 = 0. As will become clear, this is the natural velocity coordinate for single-
shock problems. Furthermore let ta0 ≡ zf0

û
be the time of first ejecta arrival on the

foil, and let tfs be the time at which the free surface arrives at the foil. The boundary
conditions

ζ (ta0) =
zf0
zf0
û

− ufs = ŵ (2.8)

ζ (tfs) =
ufs tfs
tfs

− ufs = 0 (2.9)

immediately follow. Furthermore,

zf = (ζ + ufs) t

vf = żf = ζ̇ t+ ζ + ufs (2.10)

v̇f = ζ̈ t+ 2ζ̇ (2.11)

and because causality requires vf (ta0) = 0, we obtain the initial condition

ζ̇ (ta0) = − û

ta0
= − û

2

zf0
= −zf0

t2a0
. (2.12)

Meanwhile,

(w + ufs) t− zf = (w + ufs) t− (ζ + ufs) t = (w − ζ) t
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so when written in terms of ζ rather than zf Eqn. 2.6 becomes

µf ufs +
(
ζ̇ t+ ζ

)µf +

ŵ∫
0

(w−ζ)t
w∫

0

mc (w, tc) dtc dw

 =

ŵ∫
0

(w−ζ)t
w∫

0

wmc (w, tc) dtc dw .

(2.13)
Now note

d

dt
[(w − ζ) t] = w − ζ − ζ̇ t =⇒ ζ̇ t+ ζ = w − d

dt
[(w − ζ) t] ,

and because ζ̇ t+ ζ is not a function of w,

(
ζ̇ t+ ζ

) ŵ∫
0

(w−ζ)t
w∫

0

mc (w, tc) dtc dw =

ŵ∫
0

(
ζ̇ t+ ζ

) (w−ζ)t
w∫

0

mc (w, tc) dtc dw

=

ŵ∫
0

{
w − d

dt
[(w − ζ) t]

} (w−ζ)t
w∫

0

mc (w, tc) dtc dw

=

ŵ∫
0

(w−ζ)t
w∫

0

wmc (w, tc) dtc dw −
ŵ∫

0

d

dt
[(w − ζ) t]

(w−ζ)t
w∫

0

mc (w, tc) dtc dw ,

so substitution into Eqn. 2.13 yields

µf ufs + µf

(
ζ̇ t+ ζ

)
−

ŵ∫
0

d

dt
[(w − ζ) t]

(w−ζ)t
w∫

0

mc (w, tc) dtc dw = 0

or

µf (ζ + ufs) t−
ŵ∫

0

[(w − ζ) t]

(w−ζ)t
w∫

0

mc (w, tc) dtc dw = κ (2.14)

where κ is a constant of integration. The domain of the problem guarantees t ≥
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ta0 > 0, so

µf (ζ + ufs)−
ŵ∫

0

(w − ζ)

(w−ζ)t
w∫

0

mc (w, tc) dtc dw =
κ

t

µf (ζ + ufs) + ζ

ŵ∫
0

(w−ζ)t
w∫

0

mc (w, tc) dtc dw −
ŵ∫

0

(w−ζ)t
w∫

0

wmc (w, tc) dtc dw =
κ

t
.

Using Eqn. 2.13 to substitute the third term on the left side yields

µf (ζ + ufs) + ζ

ŵ∫
0

(w−ζ)t
w∫

0

mc (w, tc) dtc dw

−

µf ufs +
(
ζ̇ t+ ζ

)µf +

ŵ∫
0

(w−ζ)t
w∫

0

mc (w, tc) dtc dw


 =

κ

t

or

−µf ζ̇ t− ζ̇ t
ŵ∫

0

(w−ζ)t
w∫

0

mc (w, tc) dtc dw =
κ

t

ζ̇

µf +

ŵ∫
0

(w−ζ)t
w∫

0

mc (w, tc) dtc dw

 = − κ
t2
. (2.15)

The integral term is exactly mt [zf (t); t], the true cumulative ejecta areal mass on the
sensor at time t. At the instant of first arrival at the sensor, ta0, Eqn. 2.15 becomes

µf ζ̇ (ta0) = − κ

t2a0
.

If the sensor is initially motionless, the initial condition ζ̇ (ta0) = − û
ta0

fixes the
integration constant to κ = µf û ta0 = µf zf0 so the original IDE (Eqn. 2.6) can be
reduced to the compact form

ζ̇

µf +

ŵ∫
0

(w−ζ)t
w∫

0

mc (w, tc) dtc dw

 = −µf zf0
t2

. (2.16)
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To reiterate, then, the problem of interest is to solve Eqn. 2.16 for ζ(t), and therefore
zf (t), given a known source function mc (w, tc).

For future reference, in cases where the foil has vf0 ≡ vf (ta0) 6= 0 when ejecta
begins to accrete upon it, the relation ζ̇ (ta0) = vf (ta0) − ζ (ta0) − ufs yields κ =
µf (zf0 − ta0vf0). The “affine” compact IDE for t0 6= 0 is given in §4.1.

3 General Implicit Solution for Instant Creation

A general implicit solution exists for instant-creation source functions,

mc (w, tc) = m0 f(w) δ (tc) (3.1)

where m0 is a positive constant and f(w) is the instantly-created particle velocity

distribution. Mass conservation imposes a normalization requirement
ŵ∫
0

f(w) dw =

∞∫
0

f(w) dw = 1 so m0 is the total sourced ejecta areal mass in these problems.

We assume the velocity distribution is twice-integrable, and define 1

F ′1 (w) ≡ f(w)

F ′2(w) ≡ F1(w)

F ′′2 (w) ≡ F ′1(w) ≡ f(w)

(This step is justified by the expectation that a real-world physics problem will
disallow mathematically pathological velocity distributions.) Placing the instant-
creation AMF into the compact IDE (Eqn. 2.16) yields

µf
m0

ζ̇ + ζ̇

ŵ∫
ζ

f(w) dw = − µf
m0

zf0
t2

µf
m0

ζ̇ + ζ̇ F1 (ŵ)− ζ̇ F1 (ζ) = − µf
m0

zf0
t2[

µf
m0

+ F1 (ŵ)

]
ζ̇ − d

dt
F2 (ζ) = zf0

µf
m0

d

dt

(
1

t

)
[
µf
m0

+ F1 (ŵ)

]
ζ − F2 (ζ) =

µf
m0

zf0
t
− ν

1The F1,2 notation used here should not be confused with the hypergeometric function 2F1.
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where ν is an integration constant. Defining the (known) constants

σ ≡ µf
m0

+ F1 (ŵ) λ = zf0
µf
m0

.

makes this

σ ζ − F2 (ζ) =
λ

t
− ν .

When t = ta0, this becomes[
µf
m0

+ F1 (ŵ)

]
ŵ − F2 (ŵ) =

µf
m0

û− ν

=⇒ ν =
µf
m0

ufs + F2 (ŵ)− ŵ F1 (ŵ) .

The implicit equation linking the measurement time t and ζ is therefore

t =
λ

σ ζ − F2 [ζ] + ν
(3.2)

where

σ =
µf
m0

+ F1 (ŵ) (3.3)

λ = zf0

(
µf
m0

)
(3.4)

ν =

(
µf
m0

)
ufs + F2 (ŵ)− ŵ F1 (ŵ) (3.5)

F ′′2 (w) = F ′1(w) = f(w) (3.6)

ζ(t) =
zf (t)

t
− ufs .

(By construction, integration constants can be disregarded when deriving F1,2 from a
smooth distribution f . But if f is piecewise continuous, F1,2 may contain additional
integration constants in order to maintain continuity.) This implicit solution for
ζ, and hence zf , can be computed straightforwardly as t (ζ). Depending on the
functional form of the particle velocity distribution, f(w), this implicit solution may
be invertible to the form ζ(t). As shown below, this is not possible in all cases. When
the inversion is not possible, the implicit solution is still sufficient for computing
trajectories with arbitrary accuracy, as for instance a Python calculation will involve
computing arrays of ζ and t values anyway.
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The implicit solution has several interesting properties. Chief among them is the
direct calculation of the free surface arrival time at the accelerated sensor, tfs. From
the boundary condition ζ (tfs) = 0 we get

tfs =
λ

ν − F2(0)
=

zf0

(
µf
m0

)
(
µf
m0

)
ufs + F2 (ŵ)− F2(0)− ŵ F1 (ŵ)

=
zf0

(
µf
m0

)
(
µf
m0

)
ufs −

ŵ∫
0

w f(w) dw

=
zf0

(
µf
m0

)
(
µf
m0

)
ufs − 〈w〉

=
zf0

ufs − m0

µf
〈w〉

where 〈w〉 denotes the mean velocity in the distribution:

〈w〉 =

∞∫
0

w f(w) dw

∞∫
0

f(w) dw

=

ŵ∫
0

w f(w) dw

ŵ∫
0

f(w) dw

=

ŵ∫
0

w f(w) dw .

When ufs <
m0

µf
〈w〉, then tfs < 0, which is unphysical (acausal). Thus the free

surface will never catch the accelerated foil if 〈w〉 > µf
m0
ufs. When these quantities

are equal, tfs → ∞ and the free surface will just catch the foil at infinity. For
physically realizable systems, causality also requires tfs > ta0, or

zf0
ufs − m0

µf
〈w〉

>
zf0
û

=⇒ û > ufs −
m0

µf
〈w〉 =⇒ ŵ > −m0

µf
〈w〉

so this condition is always satisfied.

3.1 Example: Instant Boxcar Distribution

Consider a constant uniform velocity distribution. Normalization makes this f(w) =
ŵ−1, so

F1(w) =
w

ŵ
F2(w) =

w2

2ŵ
which lead to

σ = 1 +
µf
m0

ν =

(
µf
m0

)
ufs −

ŵ

2

12



and a simple quadratic for ζ:

− ζ
2

2ŵ
+

(
1 +

µf
m0

)
ζ −

[
ŵ

2
−
(
µf
m0

)
ufs

]
=
zf0
t

(
µf
m0

)
.

The quadratic equation offers two solutions but the boundary condition ζ (ta0) = ŵ
requires the negative branch. With a little algebra, the solution can be written

ζ(t) =

(1 +
µf
m0

)
−

√(
µf
m0

)2

+ 2
zf0
ŵ

(
µf
m0

) (
1

ta0
− 1

t

) ŵ

and finally zf (t) = [ζ(t) + ufs] t.

The free surface arrival time is simply

tfs =
λ

ν − F2(0)
=
λ

ν
=

zf0

ufs − m0

µf

ŵ
2

.

The result for typical parameter values found in the literature [7] is plotted in Figure
2. The trajectory zf is plausible, and qualitatively in line with expectations based
on physical intuition and explorations based on rough numerical integrations. (The
abrupt acceleration of the foil, v̇f (ta0) > 0, might be at odds with what is seen
experimentally, but that is not surprising as we know the boxcar velocity distribution
is not generated in such experiments.)

Figure 2: The analytic solution for an instantly created boxcar velocity distribution, com-
puted using a set of parameter values typical of ejecta experiments found in the literature.
Here the titanium Asay foil is 100 µm thick (µf = 45.06 mg/cm2), m0 = 25 mg/cm2, ufs =
1.91 mm/µs, ŵ = 0.6 mm/µs, and zf0 = 30 mm. Left: Asay foil trajectory, zf (t), co-plotted
with the free surface location, zfs(t) (black). Right: Asay foil velocity, żf (t) ≡ vf (t).
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3.2 Example: Instant Exponential Distribution

The exponential distribution has

f(w) = κ e−α
w
ŵ F1(w) = −κŵ

α
e−α

w
ŵ F2(w) =

κŵ2

α2
e−α

w
ŵ

with α > 0, which leads to

σ =
µf
m0

− κŵ

α
e−α

ν =

(
µf
m0

)
ufs +

κŵ

α2
(1 + α) e−α

and the implicit solution

−κŵ
2

α2
e−α

ζ
ŵ +

[
µf
m0

− κŵ

α
e−α
]
ζ +

[
κŵ

α2
(1 + α) e−α +

(
µf
m0

)
ufs

]
=
zf0
t

(
µf
m0

)
.

Now let y(t) ≡ α
ŵ
ζ(t); the boundary conditions y (ta0) = α and y (tfs) = 0 follow.

The result is an equation of the form

A e−y(t) +B y(t)− C = f(t)

where

A ≡κ ŵ
2

α2

B ≡κ ŵ
2

α2
e−α − ŵ

α

µf
m0

C ≡
[(

µf
m0

)
ufs +

κ ŵ2

α2
(1 + α) e−α

]
f(t) ≡− zf0

t

(
µf
m0

)
.

Then

y =
f(t) + C

B
− A

B
e−y ≡ κ0 + κ1 e−y =⇒ (y − κ0) e(y−κ0) = κ1 e−κ0

so

y(t) = κ0 +W
(
κ1 e−κ0

)
=
f(t) + C

B
+W

[
−A
B

e−
f(t)+C
B

]
14



where W is the Lambert W function. The solution requires the principle branch,
W0, when the argument is negative, and W−1 branch when the argument is positive.

The free surface arrival time is

tfs =
λ

ν − F2(0)
=

zf0

(
µf
m0

)
(
µf
m0

)
ufs + κŵ

α2 (1 + α) e−α − κŵ2

α2 e−α
.

Example results for α = 1 & 7.2 are plotted in Fig. 3.

Figure 3: The analytic solution for an instantly created exponential velocity distribution
computed for α = 1 and α = 7.2, using parameter values as in the boxcar example. Left:
Asay foil trajectories, zf (t), co-plotted with the free surface location, zfs(t) (black). Right:
Asay foil velocities, żf (t) ≡ vf (t).

Again, the zf trajectories are plausible and in line with physical expectations. Inter-
estingly, the α = 1 solution exhibits a “convex” foil acceleration with v̇f (ta0) > 0,
while α = 7.2 exhibits a “concave” foil acceleration, v̇f (ta0) ≈ 0. The latter is more
consistent with physical expectations based on complementary data.

3.3 Example: Instant Power-Law Distribution

Consider an instantly created power-law velocity distribution

f(w) = κ

(
w + w0

ŵ

)−α
15



where as usual κ is the appropriate normalization constant, the positive constant w0

is required to keep f(w) finite at w = 0, and for convenience we require 0 < α < 1.
Then

F1(w) =
κ ŵα

1− α
(w + w0)

1−α F2(w) =
κ ŵα

(1− α) (2− α)
(w + w0)

2−α

and

σ =
µf
m0

+
κŵα

1− α
(w + w0)

1−α

ν =
µf
m0

ufs +
κ ŵα

(1− α) (2− α)
· (ŵ + w0)

2−α − κ ŵ1+α

1− α
· (ŵ + w0)

1−α .

In this case, the implicit equation is(
µf
m0

+
κŵα

1− α
(w + w0)

1−α
)
ζ(t)− κ ŵα

(1− α) (2− α)
[ζ(t) + w0]

2−α

+

[
µf
m0

ufs +
κ ŵα

(1− α) (2− α)
· (ŵ + w0)

2−α − κ ŵ1+α

1− α
· (ŵ + w0)

1−α
]

=
zf0
t

µf
m0

or(
µf
m0

+
κŵα

1− α
(w + w0)

1−α
)
ζ(t)− κ ŵα

(1− α) (2− α)
[ζ(t) + w0]

2−α

+

[
µf
m0

ufs +
κ ŵα

(1− α) (2− α)
· (ŵ + w0)

2−α − κ ŵ1+α

1− α
· (ŵ + w0)

1−α − zf0
t

µf
m0

]
= 0 .

Unlike the quadratic polynomial obtained from the boxcar distribution, there is no
general solution for the roots of this polynomial for any arbitrary value of α. In this
case, a better approach is to work with the implicit solution t (ζ).

Example results for w0 = ŵ and α = 0.25, 0.50, & 0.75 are plotted in Fig. 4.
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Figure 4: The analytic solution for an instantly created power-law velocity distribution
computed for w0 = ŵ and α = 0.25, 0.50, & 0.75, using parameter values as in the previous
examples. Left: Asay foil trajectories, zf (t), co-plotted with the free surface location, zfs(t)
(black). Right: Asay foil velocities, żf (t) ≡ vf (t).

3.4 Example: Instant SSVD

The self-similar velocity distribution (SSVD) [8,9] has the form

f(w) = κ1 e−ξ
w
ŵ + κ2 .

This general form holds for both the original and modified (aka“dropped” or “bound-
ary aware”) [3] versions of the SSVD; in the latter case, f (ŵ) ≡ 0. Both versions of
the SSVD adhere to the usual normalization requirement.

This leads to

F1(w) = κ2w − κ1
(
ŵ

ξ

)
e−ξ

w
ŵ F2(w) = κ2

w2

2
+ κ1

(
ŵ

ξ

)2

e−ξ
w
ŵ

and

σ =
µf
m0

+ κ2 ŵ − κ1
(
ŵ

ξ

)
e−ξ

ν =

(
µf
m0

)
ufs + κ2

ŵ2

2
+ κ1

(
ŵ

ξ

)2

e−ξ + κ1

(
ŵ2

ξ

)
e−ξ − κ2 ŵ2

=

(
µf
m0

)
ufs + κ1 ŵ

2 e−ξ
(

1

ξ
+

1

ξ2

)
− κ2

ŵ2

2
.
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For completeness, the resulting solution for t (ζ) is

t =
zf0

(
µf
m0

)
[
µf
m0

+ κ2 ŵ − κ1
(
ŵ
ξ

)
e−ξ
]
ζ − κ2 ζ2

2
− κ1

(
ŵ
ξ

)2
e−ξ

ζ
ŵ +

(
µf
m0

)
ufs + κ1 ŵ2 e−ξ

(
1
ξ

+ 1
ξ2

)
− κ2 ŵ2

2

.

This is not invertible to a ζ(t) form, so the trajectory must be computed implicitly.

Example results for ξ = 7.2 are plotted in Fig. 5.

Figure 5: The analytic solution for an instantly created self-similar velocity distribution
(SSVD) computed for ξ = 7.2, using parameter values as in the previous examples. Results
for both the original and modified (“boundary aware”) SSVD are shown. Left: Asay foil
trajectories, zf (t), co-plotted with the free surface location, zfs(t) (black). Right: Asay
foil velocities, żf (t) ≡ vf (t).

Notice that while the foil motion is similarly small for both cases, the original and
modified SSVD solutions are distinguished by the time-dependence of the foil veloc-
ity. The original SSVD predicts a convex vf , while the modified SSVD predicts a
smoother start with a concave vf .

3.4.1 Additional SSVD Variants: Linear and Exponential Tails

Two additional variations on the original SSVD are sometimes used in numerical
simulations. These variants are designed to approximately satisfy boundary condi-
tion requirements obtained from a consideration of global properties of piezoelectric
sensor data [3].
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Both variants follow the original SSVD prescription up to a “cusp” velocity, wc, with
0 < wc < ŵ. (The cusp velocity is a free parameter.) Above the cusp, the “linear
tail” (LT) variant goes linearly to f (ŵ) = 0 with the generic form

f(w) =

{
κ1 e−ξ

w
ŵ + κ2 0 ≤ w ≤ wc

κ3 (w − wc) + κ4 wc < w ≤ ŵ

whereas the “exponential tail” (ET) variant drops exponentially to f (ŵ) ≈ 0 via

f(w) =

{
κ1 e−ξ

w
ŵ + κ2 0 ≤ w ≤ wc

κ3 e−α
w
ŵ wc < w ≤ ŵ

where here α > 0 is also a free parameter.

Additional integration constants enter the problem when deriving continuous func-
tions F1,2 from these piecewise continuous velocity distributions. The mathematical
derivations are straightforward and similar to those found in the preceding examples.
Example results for ξ = 7.2, wc = 0.40, and α = 10 are plotted in Fig. 6.

Figure 6: Analytic solutions for instantly created linear- (LT) and exponential-tail (ET)
SSVD variants. These example calculations used ξ = 7.2 and wc = 0.40, with an additional
parameter α = 10 in the ET variant. All other parameter values were set as in the previous
examples. Left: Asay foil trajectories, zf (t), co-plotted with the free surface location, zfs(t)
(black). Right: Asay foil velocities, żf (t) ≡ vf (t).

3.5 Combined Results

For direct comparison, the results from the preceding calculations for various in-
stantly produced velocity distributions are co-plotted in Fig. 7. The distinction
between smooth-start (concave) and hard-start (convex) velocity histories is clear.
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Figure 7: Combined results for instantly created boxcar, exponential, power-law, and self-
similar (original and modified) velocity distributions. Left: Asay foil trajectories, zf (t).
Right: Asay foil velocities, żf (t) ≡ vf (t). The vertical lines mark the analytically computed
tfs values.

3.6 Boundary Conditions for Instant-Production Scenarios

From the implicit solution,

σ ζ − F2 (ζ) + ν =
λ

t

σ ζ̇ − ζ̇ F ′2 (ζ) = − λ
t2

σ ζ̈ − ζ̈ F ′2 (ζ)− ζ̇2F ′′2 (ζ) =
2λ

t3

ζ̈ [σ − F ′2 (ζ)]− ζ̇2F ′′2 (ζ) =
2λ

t3

ζ̈ (ta0) [σ − F ′2 (ŵ)]−
(
−û
ta0

)2

F ′′2 (ŵ) =
2λ

t3a0

ζ̈ (ta0) [σ − F1 (ŵ)]−
(
û

ta0

)2

f (ŵ) =
2λ

t3a0

ζ̈ (ta0)
µf
m0

−
(
û

ta0

)2

f (ŵ) = 2
zf0
t3a0

µf
m0

ζ̈ (ta0) =
zf0
t3a0

[
2 +

m0

µf
û f (ŵ)

]
=

û

t2a0

[
2 +

m0

µf
û f (ŵ)

]
.
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Thus, using Eqn. 2.11,

v̇f (ta0) = ζ̈ (ta0) ta0 + 2ζ̇ (ta0) =
û

t2a0

[
2 +

m0

µf
û f (ŵ)

]
ta0 − 2

û

ta0
=
m0

µf

û2

ta0
f (ŵ)

and so
v̇f (ta0) = 0 =⇒ f (ŵ) = 0 .

If an instantly created ejecta cloud is to produce a smooth-start Asay foil trajectory
with v̇f (ta0) ≈ 0, the particle velocity distribution must go to zero at the maximum
relative velocity. This is consistent with the combined exploratory findings plotted
in Fig. 7.

This finding is closely related to boundary conditions for sustained-production ejecta
source models, derived from considerations of piezoelectric pin data [3].

3.7 Final Foil Velocity

We can also derive an expression for the final foil velocity, vf (tfs) = żf (tfs). From
above, and utilizing the boundary condition ζ (tfs) = 0,

vf (tfs) = ζ̇ (tfs) tfs + ζ (tfs) + ufs = ζ̇ (tfs) tfs + ufs

while

ζ̇ (tfs) = − λ

t2fs

1

σ − F ′2 [ζ (tfs)]
= − λ

t2fs

1

σ − F1(0)
= − λ

t2fs

1
µf
m0

+ F1 (ŵ)− F1(0)

= − λ

t2fs

1
µf
m0

+
∫ ŵ
0
f(w) dw

= − λ

t2fs

1

1 +
µf
m0

= −zf0
t2fs

1

1 + m0

µf

so the final foil velocity becomes

vf (tfs) = ufs−
zf0
tfs

1

1 + m0

µf

= ufs−
ufs − m0

µf
〈w〉

1 + m0

µf

=

m0

µf
(ufs + 〈w〉)
1 + m0

µf

=
m0

µf +m0

(〈w〉+ ufs) .

This is exactly the solution (at causal measurement times) to the single-particle
problem demonstrated in §2.1, with w̃ = 〈w〉.

In other words, for instant-production scenarios, the final velocity of the foil is equiv-
alent to the velocity that would be computed assuming every particle moved at the
mean of the velocity distribution. This result is borne out by the analytically com-
puted examples, above.
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3.8 True & Inferred Cumulative Areal Masses

The true accumulated ejecta areal mass on a foil, arising from an instant-creation
source function, is

µe,t(t) = mt [zf (t); t] = m0

ŵ∫
0

[w−ζ(t)] t
w∫

0

f(w) δ (tc) dtc dw = m0

ŵ∫
ζ(t)

f(w) dw . (3.7)

Given a solution for ζ(t), this is a straightforward calculation. Note the boundary
conditions ζ (ta0) = ŵ and ζ (tfs) = 0 yield the required values µe,t (ta0) = 0 and
µe,t (tfs) = m0, respectively.

The inferred ejecta areal mass, µe,i(t), derives from the foil trajectory, żf (t), which
is the physics quantity obtained from an Asay foil diagnostic measurement. This is
achieved by solving the equation of motion for the foil, which relates µe and vf .

At a given measurement time t, basic kinematics give

[µf + µe(t)] vf (t) =
1

A

t∫
ta0

Ff (t′) dt′ =

t∫
ta0

Pf (t′) dt′

where A is the relevant collecting area of the sensor, and Ff and Pf are the force
and pressure applied to the foil via inelastic momentum transfer.

The standard piezoelectric sensor analysis procedure [10] proceeds from the assump-
tion that the ejecta cloud is sufficiently fluid that the pressure on the sensor can be
treated as the dynamical ram pressure

Pf (t) = ρ∗(t) v2(t)

where ρ∗(t) is the dynamical cloud volume density and v(t) is the time-of-flight
velocity of ejecta particles arriving at time t (hence the analysis assumption of instant
creation). Applying the same reasoning here yields

[µf + µe(t)] vf (t) =

t∫
ta0

ρ∗ (t′) v2 (t′) dt′

=⇒ µf v̇f + µe v̇f + µ̇e vf = ρ∗ v2 .
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The piezoelectric mass inference procedure [10] is based on the relationship

µe(t) =

t∫
ta0

ρ∗ (t′) v (t′) dt′

from which it follows
µf v̇f + µe v̇f + µ̇e vf = µ̇e v ,

meaning the foil equation of motion assuming instant creation is[
µf + µe(t)

]
v̇f (t) =

[
v(t)− vf (t)

]
µ̇e(t) . (3.8)

In practice the only unknown quantity is µe, as µf is known from the construction
of the foil, v is determined by the measurement time (time of flight) and assumption
of instant creation, and vf is the physics measurement.

The solution for µe(t) is straightforward. Let µ(t) ≡ µf +µe(t). Then µ̇ = µ̇e, so the
equation of motion gives

µ v̇f = (v − vf ) µ̇ =⇒ µ̇ =
v̇f

(v − vf )
µ =⇒ µ(t) = µ0 exp

[ t∫
ta0

v̇f
v − vf

dt′

]
.

At the instant of first ejecta arrival on the sensor, ta0, no mass has accumulated yet,
so µ (ta0) = µf , and thus the initial condition sets µ0 = µf . The exact solution to
the foil equation of motion (again, assuming instant creation) is therefore

µe,i(t) = µf · [ϑ(t)− 1] (3.9)

ϑ(t) = e

t∫
ta0

ϕ(t′) dt′

ϕ(t) =
v̇f (t)

v(t)− vf (t)
.

This takes a simpler and more compact form in terms of ζ. When the ejecta creation
is truly instantaneous,

ζ(t) ≡ zf (t)

t
− ufs = v(t)− ufs =⇒ v(t) = ζ(t) + ufs .
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Using the previously derived expressions for vf and v̇f (see §2.2), we can write

ϕ(t) =
ζ̈ t+ 2ζ̇

(ζ + ufs)−
(
ζ̇ t+ ζ + ufs

) = − ζ̈ t+ 2ζ̇

ζ̇ t
= − ζ̈

ζ̇
− 2

t
= − d

dt

[
ln
(
ζ̇ t2
) ]

and
t∫

ta0

ϕ (t′) dt′ = ln
[
ζ̇(ta0) t

2
a0

]
− ln

[
ζ̇(t) t2

]
so

ϑ(t) =
ζ̇(ta0) t

2
a0

ζ̇ t2
= − zf0

ζ̇ t2
.

Note

ϑ (ta0) = − zf0

ζ̇ (ta0) t2a0
=
−zf0
−zf0

= 1 =⇒ µe (ta0) = µf (1− 1) = 0

ϑ (tfs) = − zf0

ζ̇ (tfs) t2fs
= − zf0
− zf0
t2fs

1
1+

m0
µf

t2fs
= 1 +

m0

µf
=⇒ µe (tfs) = µf

[
1 +

m0

µf
− 1

]
= m0

thus confirming that this form of ϑ(t) generates the required values of µe at the initial
and final measurement times.

Finally, then, given a known (measured) foil trajectory zf (t) = [ζ(t) + ufs] t the
exact solution for the cumulative ejecta areal mass, given the assumption of instant
creation, is simply

µe,i(t) = µf

[
− zf0
ζ̇ t2
− 1

]
. (3.10)

As a sanity check, we note that if this expression is correct it must be be equivalent
to the true cumulative ejecta areal mass from an instant-creation source function,
Eqn. 3.7. From the implicit solution for the foil trajectory in instant-creation sce-
narios, Eqn. 3.2, we have

− λ
t2

=
[
σ − F ′2 (ζ)

]
ζ̇ =

[
σ − F1 (ζ)

]
ζ̇

or

− 1

ζ̇ t2
=
σ − F1 (ζ)

λ
=

µf
m0

+ F1 (ŵ)− F1 (ζ)

zf0
µf
m0

=

1 + m0

µf

ŵ∫
ζ

f(w) dw

zf0
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so then

µe,i(t) = µf

zf0
1 + m0

µf

ŵ∫
ζ

f(w) dw

zf0
− 1

 = m0

ŵ∫
ζ

f(w) dw = µe,t(t)

thereby agreeing with with Eqn. 3.7.

This result is consistent with earlier work on analytic solutions for piezoelectric mass
measurements; there, the inferred cumulative ejecta mass is equal to the true mass
when the production is truly instantaneous [2].

3.8.1 Approximate Equation of Motion

Using
ζ̇ t = vf − (ζ + ufs) =⇒ ζ̇ t2 = vf t− zf

we can write
ϑ(t) =

zf0
zf − vf t

,

and

ϑ̇ = ϑϕ =
zf0

zf − vf t
· v̇f
v − vf

=
zf0 v̇f

t (v − vf )2
.

When the foil velocity is negligible compared to the characteristic ejecta velocity,
vf � v, and when the foil displacement is negligible so that zf ≈ zf0 (note both
limits imply µe � µf )

µ̇e = µf ϑ̇ ≈ µf
v̇f
v
.

This approximated equation of motion is the version originally cited by Asay [4], and
is commonly used in foil analyses. However, it is contingent upon the limits µe � µf
and vf � v whereas neither the full equation of motion (Eqn. 3.8) nor its solution
(Eqn. 3.10) require these limits.

Given the relationship v ≈ zf0
t

, the approximate equation of motion has the solution

µe(t) =
µf
zf0

t∫
ta0

t′ v̇f (t′) dt′ .
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Integrating by parts, and applying the boundary conditions vf (ta0) = 0 and zf (ta0) ≡
zf0, leads to

µe =
µf
zf0

(t vf + zf0 − zf ) = µf

(
1− zf − t vf

zf0

)
so the approximate solution for inferred cumulative ejecta areal mass can be written
in the very simple form

µapprox
e,i (t) = µf

[
1− 1

ϑ(t)

]
. (3.11)

For comparison, recall that the exact solution to the full (unapproximated) equation
of motion (Eqn. 3.9) is

µexact
e,i (t) = µf

[
ϑ(t)− 1

]
,

meaning the fractional error incurred by using the approximate solution is

χ(t) =
µapprox
e,i (t)− µexact

e,i (t)

µexact
e,i (t)

=
µapprox
e,i (t)

µexact
e,i (t)

− 1 =
1

ϑ(t)
− 1 . (3.12)

From above, the initial fractional error will be

χ (ta0) =
1

ϑ (ta0)
− 1 = 1− 1 = 0

but these solutions will diverge as material begins to accrete upon the foil, up to a
maximum fractional error of

χ (tfs) =
1

ϑ (tfs)
− 1 =

1

1 + m0

µf

− 1 = − 1

1 +
µf
m0

. (3.13)

The preceding example calculations used µf ≈ 45 mg/cm2 (which corresponds to a
100 µm thick titanium foil) and a plausible total sourced ejecta areal mass of m0 = 25
mg/cm2 (see, e.g., [7]), meaning

µf
m0
≈ 1.8 or χ (tfs) ≈ −36%. This corresponds to

a inferred final total mass of 16 mg/cm2 as opposed to the true sourced value of
25 mg/cm2. The exact and approximated µe,i(t) values inferred from a variety of
analytically calculated foil trajectories are illustrated in Fig. 8.
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Figure 8: Cumulative ejecta areal masses corresponding to analytically derived Asay
foil trajectories for instantly generated boxcar, exponential, power-law, and self-similar
(original and modified) ejecta velocity distributions. These test problems used µf = 45
mg/cm2 (corresponding to a 100 µm thick Ti foil), a total sourced ejecta areal mass of
m0 = 25 mg/cm2, a constant lab-frame free surface velocity of ufs = 1.91 mm/µs, and a
peak lab-frame ejecta velocity of û = 2.51 mm/µs (these values are representative of Vogan
et al. [7]). In every case, the true mass accumulation computed directly from the source
function (Eqn. 3.7, black) is perfectly overlaid by the mass inferred via the exact solution
to the equation of motion (Eqn. 3.10, blue). Because m0 6� µf , solutions obtained from
the approximated equation of motion (Eqn. 3.11, orange) are inaccurate.

A dataset analyzed using the approximate solution can be easily corrected to the
exact solution. Given an inferred cumulative ejecta areal mass µapprox

e,i (t), it follows

ϑ(t) =
1

1− µapproxe,i (t)

µf

=⇒ µexact
e,i (t) =

µapprox
e,i (t)

1− µapproxe,i (t)

µf

.
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3.9 Implications for Asay Analysis Methodologies

The expression for the true mass accumulation on an Asay foil generated by an
instantaneous source (Eqn. 3.7) offers an important insight into methodologies for
Asay foil data analysis.

Consider two foils fielded in the same experiment. The foils may be situated at
different distances from the unperturbed free surface (z

(1,2)
f0 ). Or, they could be

situated at the same distance but be constructed of different materials or thicknesses;
this will cause the foils to have different acceleration histories. In general,

µ(1)
e (t) 6= µ(2)

e (t) .

In fact, the ejecta arrival interval ta0 ≤ t < tfs can be unique for each foil. Thus a

co-plot of µ
(1,2)
e (t) solutions obtained via either the exact or approximate solutions

will show two distinct curves when plotted as a function of t.

However, as long as the foils see the same instantly created particle distribution
function, f(w), Eqn. 3.7 makes it clear that

µ(1)
e (ζ) = µ(2)

e (ζ) .

Thus, when plotted as a function of ζ, the µe curves from a truly instantaneous
source should lie atop each other regardless of initial distance or foil construction.

Clearly, ζ is the natural coordinate for such comparisons. But because ζ = v − ufs
when production is instantaneous, any co-plots calculated as a function of the time
of flight ejecta velocity, v, will also align, including the often-used v

ufs
. However, as

demonstrated in Fig. 9, this alignment is globally true only for the exact solutions.
Mass curves computed using the approximate solution to the equation of motion will
not, in general, align at higher mass values, particularly when m0 6� µf .
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Figure 9: The cumulative ejecta areal mass µe(t) inferred from analytically computed
foil trajectories for instant-production boxcar (left) and modified SSVD (right) velocity
distributions, using m0 = 25 mg/cm2 and three different foils: 100 µm Ti, zf0 = 30 mm
(
µf
m0
≈ 1.8) (blue); 150 µm V, zf0 = 35 mm (

µf
m0
≈ 3.7) (orange) ; and 50 µm Al, zf0 = 40

mm (
µf
m0
≈ 0.54 (green)). The masses are coplotted versus t (top), ζ (middle), vnorm ≡ v

ufs

(bottom). The solutions computed using the exact solution (solid lines) overlay perfectly
when plotted as a function of ζ or vnorm, even when the measurement time domain differs.
This is not true for the approximate solutions (dashed lines).
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4 Towards a Solution for Sustained Production

The existence of a closed-form solution for the foil trajectory under instant pro-
duction suggests a path toward constructing a solution for more general, sustained-
production sources, particularly those of the form

mc (w, tc) = m0 f(w) g(tc) . (4.1)

The strategy is to first extend the instant-production solution to a source represented
by a train of discrete delta functions (a “Dirac comb”), and then examine the behav-
ior of that solution in the limit that the interval between individual delta functions
becomes infinitesimal (i.e., in the limit that the Dirac comb becomes a continuous
function). In this way, the goal is to treat the instant-production solution a bit like
a Green’s function for the problem.

4.1 Time-Shifted Delta Function

Consider a source function comprising a time-shifted instant-production scenario

mc (w, tc) = m0 f(w) δ (tc − t0) (4.2)

with t0 6= 0. Repeating the derivation of §2.2 for the case of a nonzero shock breakout
time leads to the “affine” compact IDE

ζ̇

µf +

ŵ∫
0

(w−ζ)t+ζ t0
w∫

0

mc (w, tc) dtc dw

 = − µf zf0
(t− t0)2

. (4.3)

When this version of the IDE is applied to the time-shifted instant production source,
the integration over creation times (tc) will be nonzero as long as

(w − ζ) t+ ζ t0
w

> t0 =⇒ w > ζ

given that causality will ensure t > t0 for all measurement times t.
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Similarly to the derivation of the instant-production solution, we then obtain

µf
m0

ζ̇ + ζ̇

ŵ∫
ζ

f(w) dw = − µf
m0

zf0
(t− t0)2

µf
m0

ζ̇ + ζ̇ F1 (ŵ)− ζ̇ F1 (ζ) = − µf
m0

zf0
(t− t0)2[

µf
m0

+ F1 (ŵ)

]
ζ̇ − d

dt
F2 (ζ) = zf0

µf
m0

d

dt

[
1

(t− t0)

]
σ0 ζ − F2 (ζ) =

λ0
(t− t0)

− κ

where as usual κ is a constant of integration. Now the time of first ejecta arrival at
the sensor is t1 +

zf0
û
≡ t1 + ta0, so based on the original initial condition derivation,

this problem has ζ (t1 + ta0) = ŵ, which leads to κ = ν0 as derived previously. The
implicit solution for this time-shifted scenario is therefore

t = t0 +
λ0

σ0 ζ − F2 [ζ] + ν0
. (4.4)

Given that the second term on the right side is already known to generate times in
the causal regime ta0 ≤ t ≤ tfs, this solution for the time-shifted source function
automatically has the correct time domain, t0 + ta0 ≤ t ≤ t0 + tfs. Furthermore, the
definition of the generalized ejecta velocity in Eqn. 2.7 gives

zf (t) = (ζ + ufs) (t− t0) =
λ0 (ζ + ufs)

σ0 ζ − F2 [ζ] + ν0
t0 + ta0 ≤ t ≤ t0 + tfs

which is the expected time-shifted copy of the t0 = 0 trajectory

zf (t) = (ζ + ufs) t =
λ0 (ζ + ufs)

σ0 ζ − F2 [ζ] + ν0
ta0 ≤ t ≤ tfs .

4.2 Two-Pulse Source Function

Now consider a source function comprising two pulses of instant production, sharing
the same velocity distribution but separated by a finite time delay:

mc (w, tc) = m0 f(w) δ (tc − t0) +m1 f(w) δ (tc − t1)
= m0 f(w) δ (tc) +m1 f(w) δ (tc − t1) (4.5)
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where in general t1 > 0. Going forward, we’ll use λk, νk, σk to denote constants con-
taining a mass normalization constant mk, and use non-subscripted symbols λ, ν, σ
to denote constants normalized by the total (maximum) areal mass in the problem,
m ≡ m0 +m1.

We will take it for granted, based on a wealth of experimental observations [6,7,10],
that the velocity distribution f(w) covers the domain (0, ŵ], meaning the trajectory
solution will naturally break into two regimes. At sufficiently early times, only
particles created in the m0 pulse can reach the foil, but eventually a mixture of
particles generated in both pulses will reach the moving sensor. More concretely,
these regimes are

1. ta0 =
zf0
û
≤ t < ta1

2. ta1 ≤ t ≤ tfs

where ta1 is the unknown time at which particles from the m1 pulse begin to arrive
on the accelerated foil, and tfs is the unknown time of free surface arrival at the foil.
The value of ta1 is implicitly defined by the important relationship

ufs (t1 − t0) + û (ta1 − t1) = zf (ta1)

û ta1 − ŵ t1 = [ζ (ta1) + ufs] ta1

ŵ (ta1 − t1) = ta1 ζ (ta1)

=⇒ ŵ

(
1− t1

ta1

)
= ζ (ta1) . (4.6)

Regime 1 constitutes our original instant-production scenario, so there the implicit
solution for the trajectory must be

t =
λ0

σ0 ζ − F2 [ζ] + ν0
. (4.7)

Our focus is to find a general solution for Regime 2, as at that point we will have the
full solution for this problem. We already know, based on the preceding analyses,
that the Regime 2 solution must exhibit particular limits:

m1 → 0 =⇒ t =
λ0

σ0 ζ − F2 [ζ] + ν0
(4.8)

t1 → 0 =⇒ t =
λ

σ ζ − F2 [ζ] + ν
(4.9)
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However, and very importantly,

m0 → 0 6=⇒ t = t1 +
λ1

σ1 ζ − F2 [ζ] + ν1
.

The reason this limit shouldn’t recover the time-shifted solution from §4.1 is because
in that problem definition, shock breakout and ejecta production were time-shifted
from t0 = 0 while still coincident. Here, the existence of two separate delta functions
at t0 = 0 and t1 > 0 fixes the shock breakout at t0, meaning the “clock” starts running
before the ejecta production pulse at t1, even when m0 → 0. This is an intermediate
step toward considering double-shock scenarios, where the free surface is shocked
(and accelerated) twice, with a potentially different velocity distribution generated
in each event. Here, the surface is not reaccelerated, and the pulses generate the
same particle velocity distribution.

Two final preparatory observations are

ŵ∫
0

wnf(w)

(w−ζ) t
w∫

0

δ (tc) dtc dw =

ŵ∫
ζ

wnf(w) dw

ŵ∫
0

wnf(w)

(w−ζ) t
w∫

0

δ (tc − t1) dtc dw =

ŵ∫
ζt
t−t1

wnf(w) dw ,

and

b∫
a

w f(w) dw =

b∫
a

wF ′1(w) dw = wF1(w)
∣∣∣b
a
−

b∫
a

F1(w) dw = [wF1(w)− F2(w)]
∣∣∣b
a
.

Placing the source AMF for this problem, Eqn. 4.5, into the noncompact IDE
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(Eqn. 2.13) therefore yields

µf ufs + µf

(
ζ̇ t+ ζ

)
+
(
ζ̇ t+ ζ

)m0

ŵ∫
ζ

f(w) dw +m1

ŵ∫
ζt
t−t1

f(w) dw

 =

m0

ŵ∫
ζ

w f(w) dw +m1

ŵ∫
ζt
t−t1

w f(w) dw

or, after combining terms on the left side,

µf ufs +
[
µf +mF1 (ŵ)

] (
ζ̇ t+ ζ

)
−m0

(
ζ̇ t+ ζ

)
F1(ζ)−m1

(
ζ̇ t+ ζ

)
F1

(
ζt

t− t1

)
=

m0

[
ŵ F1 (ŵ)− F2 (ŵ)− ζ F1 (ζ)− F2 (ζ)

]
+

m1

[
ŵ F1 (ŵ)− F2 (ŵ)−

(
ζt

t− t1

)
F1

(
ζt

t− t1

)
+ F2

(
ζt

t− t1

)]
and after a little more algebra,[
µf ufs +mF2 (ŵ)−mŵ F1 (ŵ)

]
+
[
µf +mF1 (ŵ)

] (
ζ̇ t+ ζ

)
+m0

[
ζ F1(ζ)−

(
ζ̇ t+ ζ

)
F1(ζ)− F2(ζ)

]
+m1

[(
ζt

t− t1

)
F1

(
ζt

t− t1

)
−
(
ζ̇ t+ ζ

)
F1

(
ζt

t− t1

)
− F2

(
ζt

t− t1

)]
= 0 .

Dividing by m ≡ m0 +m1 leads to the more manageable form

ν + σ
(
ζ̇ t+ ζ

)
+
m0

m

[
ζ F1(ζ)−

(
ζ̇ t+ ζ

)
F1(ζ)− F2(ζ)

]
+
m1

m

[(
ζt

t− t1

)
F1

(
ζt

t− t1

)
−
(
ζ̇ t+ ζ

)
F1

(
ζt

t− t1

)
− F2

(
ζt

t− t1

)]
= 0 .

(4.10)

Additional simplification can be obtained from the relations[
ζ F1(ζ)−

(
ζ̇ t+ ζ

)
F1(ζ)− F2(ζ)

]
= − d

dt

[
t F2(ζ)

]
[(

ζt

t− t1

)
F1

(
ζt

t− t1

)
−
(
ζ̇ t+ ζ

)
F1

(
ζt

t− t1

)
− F2

(
ζt

t− t1

)]
= − d

dt

[
(t− t1) F2

(
ζt

t− t1

)]
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such that we can write

ν + σ
d

dt
(ζ t)− m0

m

d

dt

[
t F2(ζ)

]
− m1

m

d

dt

[
(t− t1) F2

(
ζt

t− t1

)]
= 0 .

It’s worth pointing out, for future reference, that because

t F2(ζ) = (t− t0) F2

(
ζt

t− t0

)
this could be written in the form

ν + σ
d

dt
(ζ t)−

1∑
i=0

mi

m

d

dt

[
(t− ti) F2

(
ζt

t− ti

)]
= 0 . (4.11)

Integration by t yields

ν t+ σ (ζ t)− m0

m

[
t F2(ζ)

]
− m1

m

[
(t− t1) F2

(
ζt

t− t1

)]
= κ

where κ is a (currently unknown) constant of integration. Because Regime 2 is
defined such that t ≥ ta1 > ta0 > 0, we can divide through by t to obtain, finally, the
governing equation for Regime 2:

σ ζ + ν − m0

m
F2(ζ)− m1

m

(
t− t1
t

)
F2

(
ζt

t− t1

)
=
κ

t
(4.12)

where

σ ≡ µf
m

+ F1 (ŵ)

ν ≡
(µf
m

)
ufs + F2 (ŵ)− ŵ F1 (ŵ)

m ≡ m0 +m1 =
1∑
i=0

mi .

4.2.1 m1 → 0

When m1 → 0, m→ m0 in which case Eqn. 4.12 will obviously become

σ0 ζ − F2(ζ) + ν0 =
κ

t
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and because t = ta0 falls within the domain, applying the initial condition ζ (ta0) = ŵ
leads to κ = λ0 per the derivation in §3, thereby generating the previously identified
solution required in this particular limit:

t =
λ0

σ0 ζ − F2 [ζ] + ν0
.

4.2.2 t1 → 0

Similarly, when t1 → 0, Eqn. 4.12 will become

σ ζ − F2(ζ) + ν =
κ

t

and the ζ (ta0) initial condition will yield κ = λ, thereby generating the previously
identified solution required for this limit, too:

t =
λ

σ ζ − F2 [ζ] + ν
.

4.2.3 m0 → 0

Now consider m0 → 0. In this limit, Eqn. 4.12 will become

σ1 ζ −
(
t− t1
t

)
F2

(
ζt

t− t1

)
+ ν1 =

κ

t

or

σ1

(
ζ t

t− t1

)
− F2

(
ζt

t− t1

)
+ ν1

(
t

t− t1

)
=

κ

t− t1
and the domain of the problem will be ta1 ≤ t ≤ tfs. Now it is possible to solve
exactly for the first arrival time, ta1:

ufs (t1 − t0) + û (ta1 − t1) = zf0 =⇒ ta1 =
zf0 + ŵ t1

û
= ta0 +

ŵ t1
û

.

It is straightforward to show this value preserves the previously derived relationship
ζ (ta1) = ŵ, from which it also follows

ŵ ≥ ζ t

t− t1
≥ 0 for ta1 ≤ t ≤ tfs
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because the boundary condition ζ (tfs) = 0 still applies. When t = ta1 the governing
equation in this m0 → 0 limit becomes

κ = (ta1 − t1)
[
σ1 ŵ − F2 (ŵ)

]
+ ta1 ν1

from which it follows, after a little algebra,

κ = λ1 + t1
[
F2 (ŵ)− ŵ F1 (ŵ)

]
.

Written in terms of the natural variable y ≡ ζ t
t−t1 the governing equation for this

m0 → 0 limiting case becomes

σ1 y (t− t1)− F2(y) (t− t1) + ν1 t = λ1 + t1
[
F2 (ŵ)− ŵ F1 (ŵ)

]
σ1 y (t− t1)− F2(y) (t− t1) + ν1 (t− t1) = λ1 + t1

[
F2 (ŵ)− ŵ F1 (ŵ)− ν1

]
(t− t1)

[
σ1 − F2(y) + ν1

]
= λ1 −

(
µf
m1

)
ufs t1

so the implicit trajectory solution for the m0 → 0 limit of the two-pulse problem is

t = t1 +
λ1 −

(
µf
m1

)
ufs t1

σ1 y − F2(y) + ν1

where the foil position is given by

zf (t) = [ζ(t) + ufs] (t− t0) =

[(
t− t1
t

)
y + ufs

]
t .

Now the implicit solution gives t(y) for ŵ ≥ y ≥ 0.

As a sanity check, we furthermore note that when y = ŵ, this implicit solution gives

t = t1 +
λ1 −

(
µf
m1

)
ufs t1

σ1 ŵ − F2 (ŵ) + ν1
= t1 +

λ1 −
(
µf
m1

)
ufs t1(

µf
m1

)
û

= t1 +

(
µf
m1

)
(zf0 − ufs t1)(
µf
m1

)
û

=
zf0 + ŵ t1

û
= ta0 +

ŵ t1
û

thereby agreeing with the expression for ta1 obtained directly, above. (Notice the
delay relative to ta0 is not simply t1, as one might be tempted to assume.) Applying
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the boundary condition ζ (tfs) = 0 =⇒ y (tfs) = 0 yields

tfs = t1 +
λ1 −

(
µf
m1

)
ufs t1

ν1 − F2(0)
=

λ1
ν1 − F2(0)

+
t1

[
ν1 − F2(0)−

(
µf
m1

)
ufs

]
ν1 − F2(0)

=
λ1

ν1 − F2(0)
+
t1 [F2 (ŵ)− F2(0)− ŵ F1 (ŵ)]

ν1 − F2(0)

=
λ1

ν1 − F2(0)
−
t1

ŵ∫
0

w f(w) dw

ν1 − F2(0)

=
λ1

ν1 − F2(0)
− t1 〈w〉
ν1 − F2(0)

.

The first term is the tfs value pertaining to the source functionmc (w, tc) = m1 f(w) δ (tc).
Notice how the full solution for this m0 → 0 scenario has a later first-arrival time yet
an earlier free-surface arrival time than in the associated single-pulse scenario: here
the free surface approaches the motionless foil throughout the interval t0 ≤ t ≤ t1
yet ejecta production doesn’t begin until t1.

As illustrated in Fig. 10, the solution for m0 → 0 is not simply a time-shifted version
of the solution for m1 → 0.

Figure 10: Example trajectory solutions [zf (t)] for the m1 → 0 and m0 → 0 limits of
the two-pulse source function. As with previous examples, these calculations used ejecta
parameter values representative of Vogan et al. [7]: m0,1 = 25 mg/cm2, ufs = 1.91 mm/µs,
û = 2.51 mm/µs. The trajectories pertain to a 100 µm thick Ti foil (µf = 45 mg/cm2),
and the delay between pulses was t1 = 2 µs. Left: boxcar velocity distribution. Right:
modified SSVD.
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4.2.4 General Solution: m0 6= 0, m1 6= 0, t1 6= 0

The governing equation for Regime 2 (Eqn. 4.12) can be written

σ ζ + ν −
(m0

m

)
F2(ζ)−

(m1

m

)
F2

(
ζ t

t− t1

)
+

(
t1
t

) (m1

m

)
F2

(
ζ t

t− t1

)
=
κ

t

t

[
σ ζ + ν −

(m0

m

)
F2(ζ)−

(m1

m

)
F2

(
ζ t

t− t1

)]
+

(
t1m1

m

)
F2

(
ζ t

t− t1

)
= κ

so the general implicit solution for Regime 2 is

t =

κ−
(
t1m1

m

)
F2

(
ζ t

t− t1

)
σ ζ + ν −

(m0

m

)
F2(ζ)−

(m1

m

)
F2(y)

(4.13)

where, as before, we’ve used y ≡ ζ t
t−t1 . The presence of y on the right-hand side

complicates the implicit solution for t(ζ): in general, this will have to be solved
numerically.

The value of κ is determined by the requirement that the solutions for Regime 1 and
Regime 2 join smoothly at t = ta1. The value of ta1 can be obtained by numerically
solving Eqn. 4.6, at which point the Regime 1 solution gives us ζ (ta1) ≡ ζa1. Equating
the Regime 1 and Regime 2 solutions at this time, and using y (ta1) = ŵ, yields

ta1 =

κ−
(
t1m1

m

)
F2 (ŵ)

σ ζa1 + ν −
(m0

m

)
F2 (ζa1)−

(m1

m

)
F2 (ŵ)

or

κ =

[
σ ζa1 + ν −

(m0

m

)
F2 (ζa1)

]
ta1 − (ta1 − t1)

(m1

m

)
F2 (ŵ) .

When ζ = y = 0, Eqn. 4.13 yields

tfs =

κ−
(
t1m1

m

)
F2(0)

ν − F2(0)
.
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In summary, the full implicit solution for this two-pulse source function is

t =



λ0
σ0 ζ − F2 (ζ) + ν0

ta0 =
zf0
û
≤ t < ta1

κ−
(
t1m1

m

)
F2

(
ζ t

t− t1

)
σ ζ + ν −

(m0

m

)
F2(ζ)−

(m1

m

)
F2(y)

ta1 ≤ t < tfs

(4.14)

where the constants, ta1, and tfs are as defined above. Example solutions are shown
in Fig. 11.

Figure 11: Example trajectory solutions [zf (t)] for the full two-pulse source function, for
boxcar (left) and modified SSVD (right) distributions. As with previous examples, these
calculations used ejecta parameter values representative of Vogan et al. [7]: m0,1 = 25
mg/cm2, ufs = 1.91 mm/µs, û = 2.51 mm/µs. The trajectories pertain to a 100 µm thick
Ti foil (µf = 45 mg/cm2). To help emphasize the separate regimes, the delay between
pulses was arbitrarily set to a very large t1 = 10 µs.

4.3 Dirac Comb

We now generalize the two-pulse source function to a train of N pulses, namely a
Dirac comb:

mc (w, tc) =
N∑
n=0

mn f(w) δ (tc − tn) (4.15)
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where as usual t0 = 0. For future convenience, let us also define

Mj ≡
j∑

n=0

mn .

The trajectory solution now has N + 1 regimes, where regime j corresponds to the
time domain ta (j−1) ≤ t < ta j and ta j is the time of first arrival at the sensor for
particles created in the mj pulse. The trajectory solution for Regime 1 is the familiar
single-pulse instant production solution derived and explored in §3.

Consider regime k + 1, for 1 < k ≤ N . The derivation of the implicit equation for
the foil trajectory follows much as in §4.2. Placing the Dirac comb source function
into the noncompact IDE (Eqn. 2.13) yields:

µf ufs + µf

(
ζ̇ t+ ζ

)
+
(
ζ̇ t+ ζ

) k∑
n=0

mn

ŵ∫
0

f(w)

(w−ζ) t
ζ∫

0

δ (tc − tn) dtc dw =

k∑
n=0

mn

ŵ∫
0

w f(w)

(w−ζ) t
ζ∫

0

δ (tc − tn) dtc dw

µf ufs + µf

(
ζ̇ t+ ζ

)
+
(
ζ̇ t+ ζ

) k∑
n=0

mn

ŵ∫
ζ t
t−tn

f(w) dw =
k∑

n=0

mn

ŵ∫
ζ t
t−tn

w f(w) dw

µf ufs + µf

(
ζ̇ t+ ζ

)
+
(
ζ̇ t+ ζ

) k∑
n=0

mn

[
F1 (ŵ)− F1

(
ζ t

t− tn

)]
=

k∑
n=0

mn

[
ŵ F1 (ŵ)− F2 (ŵ)−

(
ζ t

t− tn

)
F1

(
ζ t

t− tn

)
+ F2

(
ζ t

t− tn

)]
or, after collecting like terms,[

µf ufs +
k∑

n=0

mn F2 (ŵ)−
k∑

n=0

mn ŵ F1 (ŵ)

]
+

[
µf +

k∑
n=0

mn F1 (ŵ)

] (
ζ̇ t+ ζ

)
+

k∑
n=0

mn

[(
ζ t

t− tn

)
F1

(
ζ t

t− tn

)
−
(
ζ̇ t+ ζ

)
F1

(
ζ t

t− tn

)
− F2

(
ζ t

t− tn

)]
= 0 .
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Now we use(
ζ t

t− tn

)
F1

(
ζ t

t− tn

)
−
(
ζ̇ t+ ζ

)
F1

(
ζ t

t− tn

)
−F2

(
ζ t

t− tn

)
= − d

dt

[
(t− tn) F2

(
ζ t

t− tn

)]
and the preceding definitions to write[

µf ufs +Mk F2 (ŵ)−Mk ŵ F1 (ŵ)
]

+
[
µf +Mk F1 (ŵ)

] (
ζ̇ t+ ζ

)
−

k∑
n=0

mn
d

dt

[
(t− tn) F2

(
ζ t

t− tn

)]
= 0 .

Defining the usual constants

νk ≡
(
µf
Mk

)
ufs + F2 (ŵ)− ŵ F1 (ŵ)

σk ≡
(
µf
Mk

)
+ F1 (ŵ)

enables us to write

νk + σk
d

dt
(ζ t)−

k∑
n=0

mn

Mk

d

dt

[
(t− tn) F2

(
ζ t

t− tn

)]
= 0 ,

which after integration over t becomes

νk t+ σk (ζ t)−
k∑

n=0

mn

Mk

(t− tn) F2

(
ζ t

t− tn

)
= κk

where κk is the usual integration constant. As the time domain of Regime k+ 1 has
t > t0 = 0, we can divide by t to obtain the governing equation for the foil trajectory
in Regime k + 1:

νk + σk ζ −
k∑

n=0

mn

Mk

(
t− tn
t

)
F2

(
ζ t

t− tn

)
=
κk
t
. (4.16)

This can be cast into a form similar to our previous implicit solutions, via

νk + σk ζ −
k∑

n=0

mn

Mk

F2

(
ζ t

t− tn

)
+

1

t

k∑
n=0

mn tn
Mk

F2

(
ζ t

t− tn

)
=
κk
t
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or, finally,

t =

κk −
k∑

n=0

mn tn
Mk

F2

(
ζ t

t− tn

)

νk + σk ζ −
k∑

n=0

mn

Mk

F2

(
ζ t

t− tn

) ta k ≤ t < ta (k+1) . (4.17)

(This solution recovers the two-pulse solution derived previously when k = 1.) All
[t, ζ(t)] pairs that lie on the foil trajectory will satisfy this implicit equation. Such
solutions will, in general, have to be found numerically, one regime at a time.

As usual, κk is determined by the condition that the regimes must meet continuously
at t = ta k. Using ζa k ≡ ζ (ta k) this boundary condition is

ta k =

κk −
k∑

n=0

mn tn
Mk

F2

(
ζa k ta k
ta k − tn

)

νk + σk ζa k −
k∑

n=0

mn

Mk

F2

(
ζa k ta k
ta k − tn

)
so

κk = ta k

[
νk + σk ζa k −

k∑
n=0

mn

Mk

F2

(
ζa k ta k
ta k − tn

)]
+

k∑
n=0

mn tn
Mk

F2

(
ζa k ta k
ta k − tn

)
. (4.18)

(This is likewise consistent with the two-pulse solution when k = 1.)
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